In this chapter we explore the concept of the interrupt and interrupt pro-
gramming. In Section 11.1 the basics of 8051 interrupts are discussed. In Section
11.2 interrupts belonging to Timers 0 and 1 are discussed. External hardware
interrupts are discussed in Section 11.3, while the interrupt related to serial com-
munication is presented in Section 11.4. In Section 11.5, we cover interrupt prior-
ity in the 8051/52. Finally, C programming of 8051 interrupts is covered in
Section 11.6.

SECTION 11.1: 8051 INTERRUPTS

In this section, first we examine the difference between polling and inter-
rupts and then describe the various interrupts of the 8051,

Interrupts vs. polling

A single microcontroller can serve several devices. There are two ways to
do that: interrupts or polling. In the interrupt method, whenever any device needs
its service, the device notifies the microcontroller by sending it an interrupt signal.
Upon recciving an interrupt signal, the microcontroller interrupts whatever it is
doing and serves the device. The program associated with the interrupt is called
the interrupt service routine (ISR) or interrupt handler. In polling, the microcon-
troller continuously monitors the status of a given device; when the status condi-
tion is met, it performs the service. After that, it moves on to monitor the next
device until each one is serviced. Although polling can monitor the status of sev-
eral devices and serve cach of them as certain conditions are met, it is not an effi-
cient use of the microcontroller. The advantage of interrupts is that the microcon-
troller can serve many devices (not all at the same time, of course); each device
can get the attention of the microcontroller based on the priority assigned to it.
The polling method cannot assign priority since it checks all devices in a round-
robin fashion. More importantly, in the interrupt method the microcontroller can
also ignore (mask) a device request for service. This is again not possible with the
polling method. The most important reason that the interrupt method is preferable
is that the polling method wastes much of the microcontroller’s time by polling
devices that do not need service. So in order to avoid tying down the microcon-
troller, interrupts are used. For example, in discussing timers in Chapter 9 we used
the instruction “JNB TF, target”, and waited until the timer rolled over, and
while we were waiting we could not do anything else. That is a waste of the micro-
controller’s time that could have been used to perform some useful tasks. In the
case of the timer, if we use the interrupt method, the microcontroller can go about
doing other tasks, and when the TF flag is raised the timer will interrupt the micro-
controller in whatever it is doing.

Interrupt service routine

For every interrupt, there must be an interrupt service routine (ISR), or
interrupt handler. When an interrupt is invoked, the microcontroller runs the inter-
rupt service routine. For every interrupt, there is a fixed location in memory that
holds the address of its ISR. The group of memory locations set aside to hold the
addresses of ISRs is called the interrupt vector table, shown in Table 11-1.

318




Steps in executing an interrupt

Upon activation of an interrupt, the microconiroller goes through the fol-
lowing steps.

1. Tt finishes the instruction it is executing and saves the address of the next
instruction (PC) on the stack.

2. It also saves the current status of all the interrupts internally (i.e., not on the
stack).

3. It jumps to a fixed location in memory called the interrupt vector table that
holds the address of the interrupt service routine.

4. The microcontroller gets the address of the ISR from the interrupt vector table
and jumps to it. It starts to execute the interrupt service subroutine until it
reaches the last instruction of the subroutine, which is RETI (return from inter-
rupt).

5. Upon executing the RETI instruction, the microcontroller returns to the place
where it was interrupted. First, it gets the program counter (PC) address from
the stack by popping the top two bytes of the stack into the PC. Then it starts
to execute from that address.

Notice from Step 5 the critical role of the stack. For this reason, we must
be careful in manipulating the stack contents in the ISR. Specifically, in the ISR,
just as in any CALL subroutine, the number of pushes and pops must be equal.

Six interrupts in the 8051

In reality, only five interrupts are available to the user in the 8051, but
many manufacturers’ data sheets state that there are six interrupts since they
include reset. The six interrupts in the 8051 are allocated as follows.

1. Reset. When the reset pin is activated, the 8051 jumps to address location
0000. This is the power-up reset discussed in Chapter 4.

2. Two interrupts are set aside for the timers: one for Timer 0 and one for Timer
1. Memory locations 000BH and 001BH in the interrupt vector table belong
to Timer 0 and Timer 1, respectively.

3. Two interrupts are set aside for hardware external hardware interrupts. Pin
numbers 12 (P3.2) and 13 (P3.3) in port 3 are for the external hardware inter-
rupts INTO and INT1, respectively. These external Interrupts are also referred
to as EX1 and EX2. Memory locations 0003H and 0013H in the interrupt vec-
tor table are assigned to INTO and INT1, respectively.

4. Serial communication has a single interrupt that belongs to both receive and
transmit. The interrupt vector table location 0023H belongs to this interrupt.

Notice in Table 11-1 that a limited number of bytes is set aside for each
interrupt. For example, a total of 8 bytes from location 0003 to 0000A is set aside
for INTO, external hardware interrupt 0. Similarly, a total of 8 bytes from location
000BH to 0012H is reserved for TFO, Timer 0 interrupt. If the service routine for
a given interrupt is short enough to fit in the memory space allocated to it, it is
placed in the vector table; otherwise, an LIMP instruction is placed in the vector
table to point to the address of the ISR. In that case, the rest of the bytes allocat-
ed to that interrupt are unused. In the next three sections we will sce many exam-
ples of interrupt programming that clarify these concepts.

CHAPTER 11: INTERRUPTS PROGRAMMING IN ASSEMBLY AND C




From Table 11-1, also notice that only three bytes of ROM space are
assigned to the reset pin. They are ROM address locations 0, 1, and 2. Address
location 3 belongs to external hardware interrupt 0. For this reason, in our program
we put the LIMP as the first instruction and redirect the processor away from the
interrupt vector table, as shown in Figure 11-1. In the next section we will seec how
this works in the context of some examples.

Table 11-1: Interrupt Vector Table for the 8051

Interrupt ROM Location (Hex) Pin Flag Clearing

Reset 0000 9 Auto

External hardware interrupt 0 (INT0) 0003 P3.2 (12) Auto

Timer 0 interrupt (TF0) 000B Auto

External hardware interrupt 1 (INT1) 0013 P3.3 (13) Auto

Timer 1 interrupt (TF1) 001B Auto

Serial COM interrupt (RI and TI) 0023 Programmer
clears it.

ORG O ;wake-up ROM reset location
LJMP MAIN ;bypass interrupt vector table

the wake-up program
ORG 30H

END

Figure 11-1. Redirecting the 8051 from the Interrupt Vector Table at Power-up
Enabling and disabling an interrupt

Upon reset, all interrupts are disabled (masked), meaning that none will be
responded to by the microcontroller if they are activated. The interrupts must be
enabled by software in order for the microcontroller to respond to them. There is
a register called IE (interrupt enable) that is responsible for enabling (unmasking)
and disabling (masking) the interrupts. Figure 11-2 shows the IE register. Note
that IE is a bit-addressable register.

From Figure 11-2 notice that bit D7 in the IE register is called EA (enable
all). This must be set to 1 in order for the rest of the register to take effect. D6 is
unused. D5 is used by the 8052. The D4 bit is for the serial interrupt, and so on.

Steps in enabling an interrupt
To enable an interrupt, we take the following steps:

. Bit D7 of the IE register (EA) must be set to high to allow the rest of register
to take effect.

. If EA =1, interrupts are enabled and will be responded to if their correspon-
ding bits in IE are high. If EA = 0, no interrupt will be responded to, even if
the associated bit in the IE register is high.

To understand this important point look at Example 11-1.




D7 DO
| EA | - T ET2 [ ES | ETI | EXI | ET0 | EX0 |

EA IE.7  Disables all interrupts. If EA = 0, no interrupt is acknowledged.
If EA = 1, each interrupt source is individually enabled or disabled
by setting or clearing its enable bit.

- IE.6  Not implemented, reserved for future use.*

ET2 IES5  Enables or disables Timer 2 overflow or capture interrupt (8052 only).

ES IE.4  Enables or disables the serial port interrupt.

ET1 IE3  Enables or disables Timer 1 overflow interrupt.

EX1 IE.2  Enables or disables external interrupt 1.

ET0 IE.1  Enables or disables Timer 0 overflow interrupt.

EX0 IE.0  Enables or disables external interrupt 0.

*User software should not write s to reserved bits. These bits may be used
in future flash microcontrollers to invoke new features.

Figure 11-2. IE (Interrupt Enable) Register

‘Example 11-1
-

- Show the instructions to (a) enable the serial interrupt, Timer 0 interrupt, and external
sardware interrupt 1 (EX1), and (b) disable (mask) the Timer 0 interrupt, then (c) show
~ mow to disable all the interrupts with a single instruction.

~ Selution:

a) MOV IE,#10010110B ;enable serial, Timer 0, EX1

Since IE is a bit-addressable register, we can use the following instructions to access
mdividual bits of the register.

b) CLR IE.1 ;mask (disable) Timer 0 interrupt only
ic) CLR IE.7 ;disable all interrupts

Another way to perform the “MOV IE,#10010110B” instruction is by using single-
oit instructions as shown below.

| SETB IE.7 ;EA=1, Global enable

| SETB IE.4 ;jenable serial interrupt
SETB IE.1 ;jenable Timer 0 interrupt
SETB IE.2 ;enable EX1

U HAPTER 11: INTERRUPTS PROGRAMMING IN ASSEMBLY AND C 321



Review Questions

1. Of the interrupt and polling methods, which one avoids tying down the micro-
controller?
. Besides reset, how many interrupts do we have in the 80517
. In the 8051, what memory area is assigned to the interrupt vector table? Can
the programmer change the memory space assigned to the table?
. What are the contents of register IE upon reset, and what do these contents
mean?
. Show the instruction to enable the EX0 and Timer 0 interrupts.
. Which pin of the 8051 is assigned to the external hardware interrupt INT17?
What address in the interrupt vector table is assigned to the INT1 and Timer 1
interrupts?

SECTION 11.2: PROGRAMMING TIMER INTERRUPTS

In Chapter 9 we discussed how to use Timer 0 and Timer 1 with the polling
method. In this section we use interrupts to program the 8051 timers. Please
review Chapter 9 before you study this section.

TFO Timer O Interrupt Vector TF1 Timer 1 Interrupt Vector

] | = 000BH | | — 001BH
Jumps to jumps to

Figure 11-3. TF Interrupt

Roll-over timer flag and interrupt

In Chapter 9 we stated that the timer flag (TF) is raised when the timer rolls
over. In that chapter, we also showed how to monitor TF with the instruction
“JNB TF, target”. In polling TF, we have to wait until the TF is raised. The
problem with this method is that the microcontroller is tied down while waiting for
TF to be raised, and cannot do any thing else. Using interrupts solves this problem
and avoids tying down the controller. If the timer interrupt in the IE register is
enabled, whenever the timer rolls over, TF is raised, and the microcontroller is
interrupted in whatever it is doing, and jumps to the interrupt vector table to serv-
ice the ISR. In this way, the microcontroller can do other things until it is notified
that the timer has rolled over. See Figure 11-3 and Example 11-2.

Notice the following points about the program in Example 11-2.

. We must avoid using the memory space allocated to the interrupt vector table.
Therefore, we place all the initialization codes in memory starting at 30H. The
LIMP instruction is the first instruction that the 8051 executes when it is pow-
ered up. LIMP redirects the controller away from the interrupt vector table.




WL TN MOV TMOD, #02H ;Timer 0, mode 2 (auto-reload)
] MOV~ PO,#0FFH ;make PO an input port

¥ MOV  IE,#82H ;IE=10000010(bin) enable Timer 0
| SETB TRO ;Start Timer 0
BACK : MOV A,PO ;get data from PO
MOV P1,A ;issue it to P1
SJMP BACK ;keep doing it

2. The ISR for Timer 0 is located starting at memory location 000BH since it is
small enough to fit the address space allocated to this interrupt.

3. We enabled the Timer 0 interrupt with “MOV IE,#10000010B” in MAIN.

4. While the PO data is brought in and issued to P1 continuously, whenever Timer
0 is rolled over, the TFO flag is raised, and the microcontroller gets out of the
“BACK?” loop and goes to 0000BH to execute the ISR associated with Timer 0.

5. Inthe ISR for Timer 0, notice that there is no need for a “CLR TFQ” instruc-
tion before the RETI instruction. This is because the 8051 clears the TF flag
internally upon jumping to the interrupt vector table.

“Enmple 11-2

wr Wmie a program that continuously gets 8-bit data from PO and sends it to P1 while
- wmultaneously creating a square wave of 200 ps period on pin P2.1. Use Timer 0 to
wrzate the square wave. Assume that XTAL = 11.0592 MHz.

J Selution:
ﬂ e will use Timer 0 in mode 2 (auto-reload). THO = 100/1.085 us =92,
]
1

—Upon wake-up go to main, avoid using memory space ;allocat-
=Z o Interrupt Vector Table

L ORG 0000H

‘ LJMP MAIN ;bypass interrupt vector table

~— ISR for Timer 0 to generate square wave

ORG 000BH ;Timer 0 interrupt vector table
CPL P2.1 ;toggle P2.1 pin
RETI ;return from ISR

—The main program for initialization
ORG 0030H ;after vector table space

: MOV  THO, #-92 ; THO=A4H for -92

;loop unless interrupted by TFO

END

In Example 11-2, the interrupt service routine was short enough that it
could be placed in memory locations allocated to the Timer 0 interrupt. However,
that is not always the case. See Example 11-3.

R 11: INTERRUPTS PROGRAMMING IN ASSEMBLY AND C 323




Example 11-3

Rewrite Example 11-2 to create a square wave that has a high portion of 1085 ps and a
low portion of 15 us. Assume XTAL = 11.0592 MHz. Use Timer 1.

Solution:
Since 1085 pus is 1000 x 1.085 we need to use mode 1 of Timer 1.

;--Upon wake-up go to main, avoid using memory space
;--allocated to Interrupt Vector Table
ORG 0000H
LJMP MAIN ;bypass interrupt vector table
;--ISR for Timer 1 to generate square wave
ORG 001BH ;Timer 1 interrupt vector table
LJMP ISR T1 ;jump to ISR
;--The main program for initialization
ORG 0030H ;after vector table
MAIN: MOV ~ TMOD, #10H ;Timer 1, mode 1
MOV PO, #0FFH ;make PO an input port
MOV  TL1,#018H ;TL1=18 the Low byte of -1000
MOV  TH1,#0FCH ;TH1=FC the High byte of -1000

MOV  IE,#88H ;IE=10001000 enable Timer 1 int.
SETB TR1 ;start Timer 1
BACK: MOV A,PO ;get data from PO
MOV P1,A ;issue it to P1
SJMP BACK ;keep doing it

I

;--Timer 1 ISR. Must be reloaded since not auto-reload

ISR T1: CLR TR1 ;stop Timer 1
CLR P2.1 ;P2.1=0, start of low portion
MOV R2,#4 ; 2 MC
HERE: DJNZ R2,HERE ;4x2 machine cycle (MC) 8 MC
MOV  TL1,#18H ;load Tl Low byte value 2 MC
MOV TH1,#0FCH ;load Tl High byte value 2 MC
SETB TR1 ;starts Timer 1 1 MC
SETB P2.1 ;P2.1=1, back to high 1 MC
RETI ;return to main
END

Notice that the low portion of the pulse is created by the 14 MC (machine
cycles) where each MC = 1.085 ps and 14 x 1.085 ps = 15.19 ps.

324




Example 11-4

Write a program to generate a square wave of 50 Hz frequency on pin P1.2. This is sim-
ilar to Example 9-12 except that it uses an interrupt for Timer 0. Assume that XTAL =

11.0592 MHz.
Solution:
ORG 0
LJMP MAIN
ORG 000BH ;ISR for Timer 0
CPL P1.2 ;complement P1.2
MOV TLO, #00 ireload timer values
MOV  THO, #0DCH
RETI ireturn from interrupt
ORG 30H istarting location for prog.
R main program for initialization
MAIN: MOV TMOD, #00000001B ;Timer 0, Mode 1

MOV TLO, #00
MOV THO, #0DCH

MOV  IE,#82H ;enable Timer 0 interrupt
SETB TRO ;start timer
HERE: SJIMP HERE istay here until interrupted
END
8051
P1.2

50 Hz square wave

Review Questions

1. True or false. There is only a single interrupt in the interrupt vector table
assigned to both Timer 0 and Timer 1.

2. What address in the interrupt vector table is assigned to Timer 0?

Which bit of IE belongs to the timer interrupt? Show how both are enabled.

4. Assume that Timer 1 is programmed in mode 2, TH1 = F5H, and the IE bit for
Timer 1 is enabled. Explain how the interrupt for the timer works.

5. True or false. The last two instructions of the ISR for Timer 0 are:
CLR TFO

RETI

(98]

CHAPTER 11: INTERRUPTS PROGRAMMING IN ASSEMBLY AND C 325




SECTION 11.3: PROGRAMMING EXTERNAL HARDWARE
INTERRUPTS

The 8051 has two external hardware interrupts. Pin 12 (P3.2) and pin 13
(P3.3) of the 8051, designated as INTO and INT1, are used as external hardware
interrupts. Upon activation of these pins, the 8051 gets interrupted in whatever it
is doing and jumps to the vector table to perform the interrupt service routine. In
this section we study these two external hardware interrupts of the 8051 with some
examples.

Level-triggered

INTO 0§ Do
SR Y = 0003
Edge-triggered | ¥ | [(TCON.D
Level-triggered
INTI . *
(Pin 3.3) ——— ITI 0013

A IEl
Edge-triggered —L (TCON.3)

Figure 11-4. Activation of INT0 and INT1

External interrupts INTO and INT1

There are only two external hardware interrupts in the 8051: INTO and
INT1. They are located on pins P3.2 and P3.3 of port 3, respectively. The inter-
rupt vector table locations 0003H and 0013H are set aside for INTO and INTI,
respectively. As mentioned in Section 11.1, they are enabled and disabled using
the IE register. How are they activated? There are two types of activation for the
external hardware interrupts: (1) level triggered, and (2) edge triggered. Let’s look
at each one. First, we sec how the level-triggered interrupt works.

Level-triggered interrupt

In the level-triggered mode, INTO and INT1 pins are normally high (just
like all I/O port pins) and if a low-level signal is applied to them, it triggers the
interrupt. Then the microcontroller stops whatever it is doing and jumps to the
interrupt vector table to service that interrupt. This is called a level-triggered or
level-activated interrupt and is the default mode upon reset of the 8051. The low-
level signal at the INT pin must be removed before the execution of the last
instruction of the interrupt service routine, RETI; otherwise, another interrupt will
be generated. In other words, if the low-level interrupt signal is not removed
before the ISR is finished it is interpreted as another interrupt and the 8051 jumps
to the vector table to execute the ISR again. Look at Example 11-5.

326




Example 11-5

Assume that the INT1 pin is connected to a switch that is normally high. Whenever it
goes low, it should turn on an LED. The LED is connected to P1.3 and is normally off.
When it is turned on it should stay on for a fraction of a second. As long as the switch
is pressed low, the LED should stay on.

Solution:
ORG 0000H
LJIJMP MAIN ibypass interrupt vector table
i--ISR for hardware interrupt INT1 to turn on the LED
ORG 0013H ; INT1 ISR
SETB P1.3 ;turn on LED
MOV  R3, #255 ;load counter
BACK: DJINZ R3,BACK ;keep LED on for a while
CLR P1.3 ;turn off the LED
RETI ;return from ISR
i --MAIN program for initialization -
ORG 30H
MAIN: MOV IE,#10000100B ;jenable external INT1
HERE: SJMP HERE istay here until interrupted
END

Pressing the switch will turn the LED on. Ifit is kept activated, the LED stays on.

8051

to

\ P13 LED
INT1

In this program, the microcontroller is looping continuously in the HERE
loop. Whenever the switch on INTI (pin P3.3) is activated, the microcontroller
gets out of the loop and jumps to vector location 0013H. The ISR for INT1 turns
on the LED, keeps it on for a while, and turns it off before it returns. If by the time
it executes the RETI instruction, the INT] pin is still low, the microcontroller inj-
tiates the interrupt again. Therefore, to end this problem, the INT] pin must be
brought back to high by the time RETI is executed.

CHAPTER 11: INTERRUPTS PROGRAMMING IN ASSEMBLY AND C 327




Sampling the low level-triggered interrupt

Pins P3.2 and P3.3 are used for normal I/0 unless the INTO and INT1 bits
in the IE registers are enabled. After the hardware interrupts in the IE register are
enabled, the controller keeps sampling the INT# pin for a low-level signal once
cach machine cycle. According to one manufacturer’s data sheet “the pin must be
held in a low state until the start of the execution of ISR. If the INT# pin is brought
back to a logic high before the start of the execution of ISR there will be no inter-
rupt.” However, upon activation of the interrupt due to the low level, it must be
brought back to high before the execution of RETI. Again, according to one man-
ufacturer’s data sheet, “If the INT# pin is left at a logic low after the RETI instruc-
tion of the ISR, another interrupt will be activated after one instruction is execut-
ed.” Therefore, to ensure the activation of the hardware interrupt at the INT# pin,
make sure that the duration of the low-level signal is around 4 machine cycles, but
no more. This is due to the fact that the level-triggered interrupt is not latched.
Thus the pin must be held in a low state until the start of the ISR execution.

1 MC
| 4 machine cycles
B to INTO
1.085 ps or INT1 pins

4 x 1.085 ps

Note:  On RESET, ITO (TCON.0) and IT1 (TCON.2) are both low, making
external interrupts level-triggered.

Figure 11-5. Minimum Duration of the Low Level-Triggered Interrupt
(XTAL = 11.0592 MHz)

Edge-triggered interrupts

As stated before, upon reset the 8051 makes INTO and INT1 low-level trig-
gered interrupts. To make them edge-triggered interrupts, we must program the
bits of the TCON register. The TCON register holds, among other bits, the ITO and
IT1 flag bits that determine level- or edge-triggered mode of the hardware inter-
rupts. ITO and IT1 are bits DO and D2 of the TCON register, respectively. They
are also referred to as TCON.0 and TCON.2 since the TCON register is bit-
addressable. Upon reset, TCON.O (IT0) and TCON.2 (IT1) are both 0s, meaning
that the external hardware interrupts of INTO and INT! pins are low-level trig-
gered. By making the TCON.O and TCON.2 bits high with instructions such as
“SETB TCON.O0” and “SETB TCON. 2", thc external hardware interrupts of
INTO and INT1 become edge-triggered. For example, the instruction
“SETB CON.2” makes INTI what is called an edge-triggered interrupt, in which,
when a high-to-low signal is applied to pin P3.3, in this case, the controller will be
interrupted and forced to jump to location 0013H in the vector table to service the
ISR (assuming that the interrupt bit is enabled in the IE register).

328




D7 DO
|_TFL ] TRI [ TF0 [ TRO | IEI | 1Tt [ 1E0 ] 1m0 |

TF1  TCON.7 Timer 1 overflow flag. Set by hardware when timer/counter 1
overflows. Cleared by hardware as the processor vectors to
the interrupt service routine.

TR1 TCON.6 Timer 1 run control bit. Set/cleared by software to turn
timer/counter 1 on/off.

TF0O TCON.5 Timer 0 overflow flag. Set by hardware when timer/counter 0
overflows. Cleared by hardware as the processor vectors to
the service routine.

TR0 TCONA4 Timer O run control bit. Set/cleared by software to turn
timer/counter 0 on/off.

IE1  TCON.3 External interrupt 1 edge flag. Set by CPU when the
external interrupt edge (H-to-L transition) is detected.
Cleared by CPU when the interrupt is processed.
Note: This flag does not latch low-level
triggered interrupts.

ITT  TCON.2 Interrupt 1 type control bit. Set/cleared by software to
specify falling edge/low-level triggered external interrupt.

IE0 TCON.1 External interrupt 0 edge flag. Set by CPU when external
interrupt (H-to-L transition) edge is detected. Cleared by CPU
when interrupt is processed. Note: This flag does not
latch low-level triggered interrupts.

IT0O TCON.O Interrupt 0 type control bit. Set/cleared by software to specify
falling edge/low-level triggered external interrupt.

Figure 11-6. TCON (Timer/Counter) Register (Bit-addressable)

Look at Example 11-6. Notice that the only difference between this pro-
gram and the program in Example 11-5 is in the first line of MAIN where the
instruction “SETB TCON . 2” makes INT1 an edge-triggered interrupt. When the
falling edge of the signal is applied to pin INTI, the LED will be turned on
momentarily. The LED’s on-state duration depends on the time delay inside the
ISR for INTI. To turn on the LED again, another high-to-low pulse must be
applied to pin 3.3. This is the opposite of Example 11-5. In Example 11-5, due to
the level-triggered nature of the interrupt, as long as INT1 is kept at a low level,
the LED is kept in the on state. But in this example, to turn on the LED again, the
INTI pulse must be brought back high and then forced low to create a falling edge
to activate the interrupt.

CHAPTER 11: INTERRUPTS PROGRAMMING IN ASSEMBLY AND C 329




Example 11-6

Assuming that pin 3.3 (INT1) is connected to a pulse generator, write a program in
which the falling edge of the pulse will send a high to P1.3, which is connected to an
LED (or buzzer). In other words, the LED is turned on and off at the same rate as the
pulses are applied to the INT1 pin. This is an edge-triggered version of Example 11-5.

Solution:
ORG 0000H
LJMP MAIN

;--ISR for hardware interrupt INT1l to turn on the LED
ORG 0013H ;INT1 ISR
SETB P1.3 ;turn on the LED
MOV  R3,#255

BACK: DONZ R3,BACK ;keep the LED on for a while
CLR P1.3 ;turn off the LED
RETI ;return from ISR

;--MAIN program for initialization
ORG 30H

MAIN: SETB TCON.2 ;make INT1 edge-trigger interrupt
MOV  IE,#10000100B ;enable External INT1

HERE: SOMP HERE ;stay here until interrupted
END

Sampling the edge-triggered interrupt

Before ending this section, we need to answer the question of how often
the edge-triggered interrupt is sampled. In edge-triggered interrupts, the external
source must be held high for at least one machine cycle, and then held low for at
least one machine cycle to ensure that the transition is seen by the microcontroller.

Minimum pulse duration to detect 1 MC

edge-triggered interrupts. e 1.085 ps

XTAL = 11.0592 MHz 1.085 ps -—
1 MC

The falling edge is latched by the 8051 and is held by the TCON register.
The TCON.1 and TCON.3 bits hold the latched falling edge of pins INTO and
INT1, respectively. TCON.1 and TCON.3 are also called IEO and IE1, respective-
ly, as shown in Figure 11-6. They function as interrupt-in-service flags. When an
interrupt-in-service flag is raised, it indicates to the external world that the inter-
rupt is being serviced and no new interrupt on this INT#» pin will be responded to
until this service is finished. This is just like the busy signal you get if calling a
telephone number that is in use. Regarding the ITO and IT1 bits in the TCON reg-
ister, the following two points must be emphasized.

330




1. The first point is that when the ISRs are finished (that is, upon execution of
instruction RETI), these bits (TCON.1 and TCON.3) are cleared, indicating
that the interrupt is finished and the 8051 is ready to respond to another inter-
rupt on that pin. For another interrupt to be recognized, the pin must go back
to a logic high state and be brought back low to be considered an edge-trig-
gered interrupt.

2. The second point is that while the interrupt service routine is being executed,
the INT# pin is ignored, no matter how many times it makes a high-to-low
transition. In reality one of the functions of the RETTI instruction is to clear the
corresponding bit in the TCON register (TCON.1 or TCON.3). This informs us
that the service routine is no longer in progress and has finished being serv-
iced. For this reason, TCON.1 and TCON.3 in the TCON register are called
interrupt-in-service flags. The interrupt-in-service flag goes high whenever a
falling edge is detected at the INT pin, and stays high during the entire execu-
tion of the ISR. It is only cleared by RETI, the last instruction of the ISR.
Because of this, there is no need for an instruction such as “CLR TCON.1”
(or “CLR TCON. 3" for INT1) before the RETI in the ISR associated with the
hardware interrupt INTO. As we will see in the next section, this is not the case
for the serial interrupt.

Example 11-7

What is the difference between the RET and RETT instructions? Explain why we can-
not use RET instead of RETI as the last instruction of an ISR.

Solution:

Both perform the same actions of popping off the top two bytes of the stack into the pro-
gram counter, and making the 8051 return to where it left off. However, RETI also per-
forms an additional task of clearing the interrupt-in-service flag, indicating that the serv-
icing of the interrupt is over and the 8051 now can accept a new interrupt on that pin. If
you use RET instead of RETI as the last instruction of the interrupt service routine, you
simply block any new interrupt on that pin after the first interrupt, since the pin status
would indicate that the interrupt is still being serviced. In the cases of TFO0, TF1,
TCON.1, and TCON.3, they are cleared by the execution of RETI.

More about the TCON register

Next we look at the TCON register more closely to understand its role in
handling interrupts. Figure 11-6 shows the bits of the TCON register.

ITO and IT1

TCON.0 and TCON.2 are referred to as ITO and IT1, respectively. These
two bits set the low-level or edge-triggered modes of the external hardware inter-
rupts of the INTO and INT1 pins. They are both 0 upon reset, which makes them
low-level triggered. The programmer can make either of them high to make the
external hardware interrupt edge-triggered. In a given system based on the 8051,
once they are set to 0 or 1 they will not be altered again since the designer has fixed
the interrupt as either edge- or level-triggered. '

CHAPTER 11: INTERRUPTS PROGRAMMING IN ASSEMBLY AND C 331




IEO and IE1

TCON.1 and TCON.3 are referred to as IEO and IE1, respectively. These
bits are used by the 8051 to keep track of the edge-triggered interrupt only. In other
words, if the ITO and IT1 are 0, meaning that the hardware interrupts are low-level
triggered, IEO and IE1 are not used at all. The IEO and IE1 bits are used by the
8051 only to latch the high-to-low edge transition on the INTO and INT1 pins.
Upon the edge transition pulse on the INTO (or INT1) pin, the 8051 marks (sets
high) the IEx bit in the TCON register, jumps to the vector in the interrupt vector
table, and starts to execute the ISR. While it is executing the ISR, no H-to-L pulse
transition on the INTO (or INT1) is recognized, thereby preventing any interrupt
inside the interrupt. Only the execution of the RETI instruction at the end of the
ISR will clear the IEx bit, indicating that a new H-to-L pulse will activate the inter-
rupt again. From this discussion we can see that the IEQ and IE1 bits are used inter-
nally by the 8051 to indicate whether or not an interrupt is in use. In other words,
the programmer is not concerned with these bits since they are solely for internal
use.

TRO and TR1

These are the D4 (TCON.4) and D6 (TCON.6) bits of the TCON register.
We were introduced to these bits in Chapter 9. They are used to start or stop timers
0 and 1, respectively. Although we have used syntax such as “SETB TRx” and
“CLR Trx”, we could have used instructions such as “SETB TCON.4” and
“CLR TCON.4” since TCON is a bit-addressable register.

TFO and TF1

These are the D5 (TCON.5) and D7 (TCON.7) bits of the TCON register.
We were introduced to these bits in Chapter 9. They are used by timers 0 and 1,
respectively, to indicate if the timer has rolled over. Although we have used the
syntax “JNB TFx, target” and “CLR Trx”, we could have used instructions
such as “*JNB TCON.5, target” and “CLR TCON. 5" since TCON is bit-
addressable.

Review Questions

I True or false. There is a single interrupt in the interrupt vector table assigned
to both external hardware interrupts ITO and IT].
2. What address in the interrupt vector table is assigned to INTO and INT1? How
about the pin numbers on port 3?
3. Which bit of IE belongs to the external hardware interrupts? Show how both
are enabled.
4. Assume that the IE bit for the external hardware interrupt EX1 is enabled and
is active low. Explain how this interrupt works when it is activated.
5. True or false. Upon reset, the external hardware interrupt is low-level trig-
gered.
6. In Question 5, how do we make surc that a single interrupt is not recognized
as multiple interrupts? .
7. True or false. The last two instructions of the ISR for INTO are:
CLR TCON.1
RETI
8. Explain the role that each of the two bits TCON.0 and TCON.2 play in the exe-
cution of external interrupt 0.

332




SECTION 11.4: PROGRAMMING THE SERIAL COMMUNI-
CATION INTERRUPT

In Chapter 10 we studied the serial communication of the 8051. All exam-
ples in that chapter used the polling method. In this section we explore interrupt-
based serial communication, which allows the 8051 to do many things, in addition
to sending and receiving data from the serial communication port.

Rl and TI flags and interrupts

As you may recall from Chapter 10, TI (transfer interrupt) is raised when
the last bit of the framed data, the stop bit, is transferred, indicating that the SBUF
register is ready to transfer the next byte. RI (received interrupt), is raised when
the entire frame of data, including the stop bit, is received. In other words, when
the SBUF register has a byte, RI is raised to indicate that the received byte needs
to be picked up before it is lost (overrun) by new incoming serial data. As far as
serial communication is concerned, all the above concepts apply equally when
using either polling or an interrupt. The only difference is in how the serial com-
munication needs are served. In the polling method, we wait for the flag (TI or RI)
to be raised; while we wait we cannot do anything else. In the interrupt method,
we are notified when the 8051 has received a byte, or is ready to send the next
byte; we can do other things while the serial communication needs are served.

In the 8051 only one interrupt is set aside for serial communication. This
interrupt is used to both send and receive data. If the interrupt bit in the IE regis-
ter (IE.4) is enabled, when RI or TI is raised the 8051 gets interrupted and jumps
to memory address location 0023H to execute the ISR. In that ISR we must exam-
ine the TI and RI flags to see which one caused the interrupt and respond accord-
ingly. See Example 11-8.

T1 :j )- 00234
RI

Serial interrupt is invoked by TI or RI flags

Figure 11-7. Single Interrupt for Both TI and RI

Use of serial COM in the 8051

In the vast majority of applications, the serial interrupt is used mainly for
receiving data and is never used for sending data serially. This is like receiving a
telephone call, where we need a ring to be notified. If we need to make a phone
call there are other ways to remind ourselves and so no need for ringing. Inreceiv-
ing the phone call, however, we must respond immediately no matter what we are
doing or we will miss the call. Similarly, we use the serial interrupt to receive
incoming data so that it is not lost. Look at Example 11-9.

CHAPTER 11: INTERRUPTS PROGRAMMING IN ASSEMBLY AND C 333




Example 11-8

for both transmit and receive.

Write a program in which the 8051 reads data from P1 and writes it to P2 continuously
while giving a copy of it to the serial COM port to be transferred serially. Assume that
XTAL = 11.0592 MHz. Set the baud rate at 9600.

;jump to serial interrupt ISR

;make Pl an input port
;timer 1, mode 2 (auto-reload)
;9600 baud rate

;8-bit, 1 stop, REN enabled
;enable serial interrupt
;start timer 1

;read data from port 1

;give a copy to SBUF

;send it to P2

;stay in loop indefinitely

;jump 1f TI is high
;otherwise due to receive
;clear RI since CPU does not
;return from ISR

;clear TI since CPU does not
;return from ISR

Solution:
ORG O
LJMP MAIN
ORG 23H
LJMP SERIAL
ORG 30H

MAIN: MOV  P1,#0FFH
MOV  TMOD, #20H
MOV  TH1, #0FDH
MOV  SCON, #50H
MOV  IE,#10010000B
SETB TR1

BACK: MOV A,P1
MOV  SBUF,A
MOV  P2,A
SJMP BACK

H

P e e Serial Port ISR
ORG 100H

SERIAL: JB TI, TRANS
MOV A, SBUF
CLR RI
RETI

TRANS : CLR TI
RETI
END

In the above program notice the role of TI and RI. The moment a byte is written into
SBUF it is framed and transferred serially. As a result, when the last bit (stop bit) is
transferred the TI is raised, which causes the serial interrupt to be invoked since the cor-
responding bit in the IE register is high. In the serial ISR, we check for both TT and RI
since both could have invoked the interrupt. In other words, there is only one interrupt

Clearing Rl and Tl before the RETI instruction

Notice in Example 11-9 that the last instruction before the RETI is the
clearing of the RI or TI flags. This is necessary since there is only one interrupt for
both receive and transmit, and the 8051 does not know who generated it; therefore,
it is the job of the ISR to clear the flag. Contrast this with the external and timer
interrupts where it is the job of the 8051 to clear the interrupt flags. By contrast,

334




Example 11-9
Write a program in which the 8051 gets data from P1 and sends it to P2 continuously
while incoming data from the serial port is sent to PO. Assume that XTAL =
11.0592 MHz. Set the baud rate at 9600.
Solution:
ORG 0
LJMP MAIN
ORG 23H
LJMP SERIAL . ;Jjump to serial ISR
ORG 30H
MAIN: MOV  P1, #0OFFH jmake Pl an input port
MOV  TMOD, #20H jtimer 1, mode 2(auto-reload)
MOV  THI1,#OFDH ;9600 baud rate
MOV  SCON, #50H ;8-bit,1 stop, REN enabled
MOV  IE,#10010000B ienable serial interrupt
SETB TR1 ;start Timer 1
BACK: MOV A,p1 ;jread data from port 1
MOV  P2,A ;send it to P2
SJMP BACK istay in loop indefinitely
P T oo SERIAL PORT ISR
ORG 100H
SERIAL: JB  TI,TRANS ijump if TI is high
MOV A, SBUF ;otherwise due to receive
MOV  PO,A ;send incoming data to PO
CLR RI ;clear RI since CPU doesn’t
RETI ;return from ISR
TRANS : CLR TI iclear TI since CPU doesn’t
RETI ;return from ISR
END

in serial communication the RI (or TI) must be cleared by the programmer using
software instructions such as “CLR TI” and “CLR RI” in the ISR. See Example
11-10. Notice that the last two instructions of the ISR are clearing the flag, fol-
lowed by RETI.

Before finishing this section notice the list of all interrupt flags given in

Table 11-2. While the Table 11-2: Interrupt Flag Bits for the 8051/52
TCON register holds

four of the interrupt Interrupt _ Flag SFR Register Bit
flags, in the 8051 the External0  TEO TCON.1
SCON register has the E?itemal 1 [E1 TCON.3
RI and TI flags. Timer 0 TFO TCON.5
Timer 1 TF1 TCON.7
Serial port Tl SCON.1
Timer 2 TF2 T2CON.7 (AT89C52)
Timer 2 EXF2 T2CON.6 (AT89C52)

CHAPTER 11: INTERRUPTS PROGRAMMING IN ASSEMBLY AND C 335




Example 11-10
Write a program using interrupts to do the following:
(a) Receive data serially and send it to PO,
(b) Have port P1 read and transmitted serially, and a copy given to P2,
(c) Make Timer 0 generate a square wave of 5 kHz frequency on PO0.1.
Assume that XTAL = 11.0592 MHz. Set the baud rate at 4800.
Solution:
ORG O
LJMP MAIN
ORG 000BH ;ISR for Timer O
CPL PO.1 ;toggle PO.1
RETI ;return from ISR
ORG 23H
LJMP SERIAL ;jump to serial int. ISR
ORG 30H
MAIN: MOV  P1l,#0OFFH ;make Pl an input port
MOV  TMOD, #22H ;timer 0&1,mode 2, auto-reload
MOV  TH1, #0F6H ;4800 baud rate
MOV  SCON, #50H ;8-bit, 1 stop, REN enabled
MOV  THO, #-92 ;for 5 KHz wave
MOV IE,#10010010RB ;enable serial, timer 0 int.
SETB TR1 ;start timer 1
SETB TRO ;start timer O
BACK: MOV A,P1 ;read data from port 1
MOV  SBUF,A ;give a copy to SBUF
MOV  P2,A ;write it to P2
SJIMP BACK ;stay in loop indefinitely
§ R S S S e s s v S SERIAL PORT ISR
ORG 100H
SERIAL: JB TI, TRANS ;jump if TI is high
MOV A, SBUF ;otherwise due to received
MOV  PO,A ;send serial data to PO
CLR RI ;clear RI since CPU does not
RETI ;return from ISR
TRANS: CLR TI ;clear TI since CPU does not
RETI ;return from ISR
END '

Review Questions

1. True or false. There is a single interrupt in the interrupt vector table assigned
to both the TI and RI interrupts.

2. What address in the interrupt vector table is assigned to the serial interrupt?

3. Which bit of the IE register belongs to the serial interrupt? Show how it is
enabled.

4. Assumec that the IE bit for the serial interrupt is enabled. Explain how this
interrupt gets activated and also explain its actions upon activation.

336




5. True or false. Upon reset, the serial interrupt is active and ready to go.
6. True or false. The last two instructions of the ISR for the receive interrupt are:
CLR RI

RETI
7. Answer Question 6 for the send interrupt.

SECTION 11.5: INTERRUPT PRIORITY IN THE 8051/52

The next topic that we must deal with is what happens if two interrupts arc
activated at the same time? Which of these two interrupts is responded to first?
Interrupt priority is the main topic of discussion in this section.

Interrupt priority upon reset

When the 8051 is powered up, the priorities are assigned according to
Table 11-3. From Table 11-3 we see, for example, that if external hardware inter-
rupts 0 and 1 are activated at the same time, external interrupt 0 (INTO) is respond-
ed to first. On1.y after INTO apje 11-3: 8051/52 Interrupt Priority Upon Reset
has been serviced is INT1
serviced, since INT1 has Highest to Lowest Priority

the lower priority. In reali- External Interrupt 0 (INTO)
ty, the priority scheme in Timer Interrupt 0 (TFO0)
the table is nothing but an External Interrupt 1 (INT1)
internal polling sequence Timer Interrupt 1 (TF1)
in which the 8051 polls the Serial Communication (RI + TI)
interrupts in the sequence Ximer 2 (8052 only) TF2

listed in Table 11-3, and
responds accordingly.

Example 11-11

Discuss what happens if interrupts INTO, TF0, and INT1 are activated at the same time.
Assume priority levels were set by the power-up reset and that the external hardware
interrupts are edge-triggered.

Solution:

If these three interrupts are activated at the same time, they are latched and kept inter-
nally. Then the 8051 checks all five interrupts according to the sequence listed in Table
11-3. If any is activated, it services it in sequence. Therefore, when the above three
interrupts are activated, IEQ (external interrupt 0) is serviced first, then Timer 0 (TFO0),
and finally IE1 (external interrupt 1).

CHAPTER 11: INTERRUPTS PROGRAMMING IN ASSEMBLY AND C 337




DY DO
|-- | - |PT2]PS]PT1|PX1|PTO|PXOJ

Priority bit = 1 assigns high priority. Priority bit = 0 assigns low priority.

- IP.7  Reserved

- IP.6  Reserved

PT2 IPS  Timer 2 interrupt priority bit (8052 only)
PS IP4  Serial port interrupt priority bit

PT1 IP3  Timer 1 interrupt priority bit

PX1 [P2  External interrupt | priority bit

PTO0 IP.1  Timer O interrupt priority bit

PX0 [P0  External interrupt O priority bit

User software should never write 1s to unimplemented bits, since they may be used in
future products.

Figure 11-8. Interrupt Priority Register (Bit-addressable)

Setting interrupt priority with the IP register

We can alter the sequence of Table 11-3 by assigning a higher priority to
any one of the interrupts. This is done by programming a register called IP (inter-
rupt priority). Figure 11-8 shows the bits of the IP register. Upon power-up reset,
the IP register contains all Os, making the priority sequence based on Table 11-3.
To give a higher priority to any of the interrupts, we make the corresponding bit in
the IP register high. Look at Example 11-12.

Example 11-12

(a) Program the IP register to assign the highest priority to INT1 (external interrupt 1), |
then (b) discuss what happens if INTO, INT1, and TFO are activated at the same time.
Assume that the interrupts are both edge-triggered.

Solution:

(a) MOV IP,#00000100B ;IP.2=1 to assign INT1 higher priority
The instruction “SETB IP.2” also will do the same thing as the above line since
IP is bit-addressable.
(b) The instruction in Step (a) assigned a higher priority to INT1 than the others; there-
fore, when INTO, INT1, and TFO interrupts are activated at the same time, the 8051
services INT1 first, then it services INTO, then TFO. This is due to the fact that INT1
has a higher priority than the other two because of the instruction in Step (a). The
instruction in Step (a) makes both the INTO and TFO bits in the IP register 0. As a
result, the sequence in Table 11-3 is followed, which gives a higher priority to INTO
over TFO.

338




Example 11-13

Assume that after reset, the interrupt priority is set by the instruction
“MOV IP, #00001100B”. Discuss the sequence in which the interrupts are serv-
iced.

Solution:

The instruction “MOV IP, #00001100B” (B is for binary) sets the external interrupt
1 (INT1) and Timer 1 (TF1) to a higher priority level compared with the rest of the inter-
rupts. However, since they are polled according to Table 11-3, they will have the fol-
lowing priority.

Highest Priority External Interrupt 1 (INT1)
Timer Interrupt 1 (TF1)
External Interrupt 0 (INTO)
Timer Interrupt 0 (TF0)

Lowest Priority Serial Communication (RI+TI)

Another point that needs to be clarified is the interrupt priority when two
or more interrupt bits in the IP register are set to high. In this case, while these
interrupts have a higher priority than others, they are serviced according to the
sequence of Table 11-3. See Example 11-13.

Interrupt inside an interrupt

What happens if the 8051 is executing an ISR belonging to an interrupt and
another interrupt is activated? In such cases, a high-priority interrupt can interrupt
a low-priority interrupt. This is an interrupt inside an interrupt. In the 8051 a low-
priority interrupt can be interrupted by a higher-priority interrupt, but not by anoth-
er low-priority interrupt. Although all the interrupts are latched and kept internal-
ly, no low-priority interrupt can get the immediate attention of the CPU until the
8051 has finished servicing the high-priority interrupts.

Triggering the interrupt by software

There are times when we need to test an ISR by way of simulation. This
can be done with simple instructions to sct the interrupts high and thereby cause
the 8051 to jump to the interrupt vector table. For example, if the IE bit for Timer
1 is set, an instruction such as “SETB TF1” will interrupt the 8051 in whatever it
is doing and force it to jump to the interrupt vector table. In other words, we do
not need to wait for Timer 1 to roll over to have an interrupt. We can cause an inter-
rupt with an instruction that raises the interrupt flag.

CHAPTER 11: INTERRUPTS PROGRAMMING IN ASSEMBLY AND C 339




Review Questions

1. True or false. Upon reset, all interrupts have the same priority.

2. What register keeps track of interrupt priority in the 80517 Is it a bit-address-
able register?

3. Which bit of IP belongs to the serial interrupt priority? Show how to assign it
the highest priority.

4. Assume that the IP register contains all Os. Explain what happens if both INTO
and INT1 are activated at the same time.

5. Explain what happens if a higher-priority interrupt is activated while the 8051
is serving a lower-priority interrupt (that is, executing a lower-priority ISR).

SECTION 11.6: INTERRUPT PROGRAMMING IN C

So far all the programs in this chapter have been written in Assembly. In
this section we show how to program the 8051/52’s interrupts in 8051 C language.
In reading this section, it is assumed that you already know the material in the first
two sections of this chapter.

8051 C interrupt numbers

The 8051 C compilers have extensive support for the 8051 interrupts with
two major features as follows:

1. They assign a unique number to each of the 8051 interrupts, as shown in Table
11-4.

2. It can also assign a register bank to an ISR. This avoids code overhead due to
the pushes and pops of the RO - R7 registers.

Table 11-4: 8051/52 Interrupt Numbers in C

Interrupt Name Numbers used by 8051 C
External Interrupt 0 (INTO) 0
Timer Interrupt 0 (TFO) 1
External Interrupt 1 (INT1) 2
Timer Interrupt 1 (TF1) 3
Serial Communication  (RI + TI) 4
Timer 2 (8052 only) (TF2) 5

Example 11-14 shows how a simple interrupt is written in 8051 C.

340




Example 11-14

Write a C program that continuously gets a single bit of data from P1.7 and sends it to
P1.0, while simultaneously creating a square wave of 200 ps period on pin P2.5. Use
timer O to create the square wave. Assume that XTAL = 11.0592 MHz.

Solution:

We will use timer 0 in mode 2 (auto-reload). One half of the period is 100 ps.
100 /1. 085 us = 92, and THO = 256 — 92 = 164 or A4H

#include <reg51l.h>

sbit SW = P177;
sbit IND = P1%0;
sbit WAVE = pP2”5;

void timer0O(void) interrupt 1

{
WAVE = ~WAVE; //toggle pin
void main ()
{
SW = 1; //make switch input
TMOD = 0x02;
THO = O0xA4; //THO = -92
IE = 0x82; //enable interrupts for timer 0
while (1)
{
IND = SW; //send switch to LED
}

200 pus /2 =100 ps
100 ps / 1.085 ps =92
8051

P1.0 LED

SWITCH

P1.7 5000 Hz

CHAPTER 11: INTERRUPTS PROGRAMMING IN ASSEMBLY AND C 341




Example 11-15

Write a C program that continuously gets a single bit of data from P1.7 and sends it to
P1.0 in the main, while simultaneously (a) creating a square wave of 200 ps period on
pin P2.5, and (b) sending letter ‘A’ to the serial port. Use Timer 0 to create the square
wave. Assume that XTAL = 11.0592 MHz. Use the 9600 baud rate.

Solution:
We will use Timer 0 in mode 2 (auto-reload). THO = 100/1.085 us =-92, which is A4H

#include <reg51.h>

sbit SW = P1%7;
sbit IND = P170;
sbit WAVE = P275;

void timero0(void) interrupt 1

{
WAVE = ~WAVE; //toggle pin
}
void serial0O() interrupt 4
{
if(TI == 1)
{
SBUF = 'A'; //send A to serial port
TI = 0; //clear interrupt
}
else
{
RI = 0; //clear interrupt

void main ()

{
SW = 1; //make switch input
TH1 = -3; //9600 baud
TMOD = 0x22; //mode 2 for both timers
THO = OxA4; //-92=A4H for timer O
SCON = 0x50;
TRO = 1;
TR1 = 1; //start timer
IE = 0x92; //enable interrupt for TO
while (1) //stay here
{
IND = SW; //send switch to LED
}
}

342




Example 11-16

Write a C program using interrupts to do the following:
(a) Receive data serially and send it to PO,
(b) Read port P1, transmit data serially, and give a copy to P2,

(c) Make timer 0 generate a square wave of 5 kHz frequency on PO.1.

Assume that XTAL = 11.0592 MHz. Set the baud rate at 4800.
Solution:

#include <reg51.h>
sbit WAVE = P0"1;

void timer0() interrupt 1

{

WAVE = ~WAVE; //toggle pin
}
void serialO() interrupt 4
{
if(TI == 1)
{
TI = 0; //clear interrupt
}
else
{
PO = SBUF; //put value on pins
RI = 0; //clear interrupt
}
}
void main()
{
unsigned char x;
Pl = OXFF; //make P1 an input
TMOD = 0x22;
TH1 = O0xF6; //4800 baud rate
SCON = 0x50;
THO = OxXA4; //5 kHz has T = 200 us
IE = 0x92; //enable interrupts
TR1 = 1; //start timer 1
TRO = 1; //start timer 0
while (1)
{
X = P1; //read value from pins
SBUF = X; //put value in buffer
P2 = X; //write value to pins

CHAPTER 11: INTERRUPTS PROGRAMMING IN ASSEMBLY AND C

343




Example 11-17

Write a C program using interrupts to do the following:

(2) Generate a 10000 Hz frequency on P2.1 using TO 8-bit auto-reload,

(b) Use timer 1 as an event counter to count up a 1-Hz pulse and display it on P0. The
pulse is connected to EXI1.

Assume that XTAL = 11.0592 MHz. Set the baud rate at 9600.

Solution:
#include <reg51.hs>

sbit WAVE = P271;
unsigned char cnt;

void timerO() interrupt 1

{
WAVE = ~WAVE; //toggle pin
}
void timerl() interrupt 3
{
cnt++; //increment counter
PO = cnt; //display value on pins

}

void main()

{
cnt = 0; //set counter to zero
TMOD = 0x42;
THO = 0x-46; //10000 Hz
IE = 0x86; //enable interrupts
TRO = 1; //start timer O
TR1I = 1; //start timer 1
while (1) ; //wait until interrupted

}

1 /10000 Hz = 100 ps

100 ps /2 =50 ps

50 ps / 1.085 ps = 46 5031

N LEDs

- 10000 Hz

344




SUMMARY

An interrupt is an external or internal event that interrupts the microcon-
troller to inform it that a device needs its service. Every interrupt has a program
associated with it called the ISR, or interrupt service routine. The 8051 has 6 inter-
rupts, 5 of which are user-accessible. The interrupts are for reset: two for the
timers, two for external hardware interrupts, and a serial communication interrupt,
The 8052 has an additional interrupt for Timer 2.

The 8051 can be programmed to enable or disable an interrupt, and the
interrupt priority can be altered. This chapter showed how to program 8051/52
Interrupts in both Assembly and C languages.

PROBLEMS
SECTION 11.1: 8051 INTERRUPTS

Which technique, interrupt or polling, avoids tying down the microcontroller?

Including reset, how many interrupts does the 8051 have?

In the 8051 what memory area is assigned to the interrupt vector table?

True or false. The 8051 programmer cannot change the memory space

assigned to the interrupt vector table.

What memory address in the interrupt vector table is assigned to INT0?

What memory address in the interrupt vector table is assigned to INT1?

What memory address in the interrupt vector table is assigned to Timer 0?

What memory address in the interrupt vector table is assigned to Timer 1?

What memory address in the interrupt vector table is assigned to the serial

COM interrupt?

10. Why do we put an LIMP instruction at address 0? :

11. What are the contents of the IE register upon reset, and what do these values
mean?

12. Show the instruction to enable the EX1 and Timer 1 interrupts.

13. Show the instruction to enable every interrupt of the 8051.

14. Which pin of the 8051 is assigned to the external hardware interrupts INTO and
INT1?

15. How many bytes of address space in the interrupt vector table are assigned to
the INTO and INT1 interrupts?

16. How many bytes of address space in the interrupt vector table are assigned to
the Timer 0 and Timer 1 interrupts?

17. To put the entire interrupt service routine in the interrupt vector table, it must
be no more than bytes in size.

18. True or false. The IE register is not a bit-addressable register.

19. With a single instruction, show how to disable all the interrupts.

20. With a single instruction, show how to disable the EX1 interrupt.

21. True or false. Upon reset, all interrupts are enabled by the 8051.

22. In the 8051, how many bytes of ROM space are assigned to the reset interrupt,

and why?

bl o

© %N o

CHAPTER 11: INTERRUPTS PROGRAMMING IN ASSEMBLY AND C 345




SECTION 11.2: PROGRAMMING TIMER INTERRUPTS

23,
24.
25.
26.
27,

28.

29,

30.

31

32,

True or false. For both Timer 0 and Timer 1, there is an interrupt assigned to it
in the interrupt vector table.
What address in the interrupt vector table is assigned to Timer 17
Which bit of IE belongs to the Timer 0 interrupt? Show how it is enabled.
Which bit of IE belongs to the Timer | interrupt? Show how it is enabled.
Assume that Timer 0 is programmed in mode 2, TH1 = FOH, and the IE bit for
Timer O is enabled. Explain how the interrupt for the timer works.
True or false. The last two instructions of the ISR for Timer 1 are:

CLR TF1

RETI
Assume that Timer 1 is programmed for mode 1, THO = FFH, TL1 = F8H, and
the IE bit for Timer | is enabled. Explain how the interrupt is activated.
If Timer 1 1s programmed for interrupts in mode 2, explain when the interrupt
is activated.
Write a program to create a squarc wave of T = 160 ms on pin P2.2 while at
the same time the 8051 is sending out 55H and AAH to P1 continuously.
Write a program in which every 2 seconds, the LED connected to P2.7 is
turned on and off four times, while at the same time the 8051 is getting data
from P1 and sending it to PO continuously. Make sure the on and off states are
50 ms in duration.

SECTION 11.3: PROGRAMMING EXTERNAL HARDWARE INTERRUPTS

33.

34.

35.
36.
37.
38.

39,
40.

41.
42.
43.

44.
45.
46.

True or false. A single interrupt is assigned to cach of the external hardware
interrupts EX0 and EX1.
What address in the interrupt vector table is assigned to INTO and INT1? How
about the pin numbers on port 3?
Which bit of IE belongs to the EX0 interrupt? Show how it is enabled.
Which bit of IE belongs to the EX1 interrupt? Show how it is enabled.
Show how to enable both external hardware interrupts.
Assume that the IE bit for external hardware interrupt EX0 is enabled and is
low-level triggered. Explain how this interrupt works when it is activated. How
can we make sure that a single interrupt is not interpreted as multiple interrupts?
True or false. Upon reset, the external hardware interrupt is edge-triggered.
In Question 39, how do we make sure that a single interrupt is not recognized
as multiple interrupts?
Which bits of TCON belong to EX0?
Which bits of TCON belong to EX1?
True or false. The last two instructions of the ISR for INT1 are:

CLR TCON.3

RETI
Explain the role of TCON.0 and TCON.2 in the execution of external interrupt 0.
Explain the role of TCON.1 and TCON.3 in the execution of external interrupt 1.
Assume that the IE bit for external hardware interrupt EX1 is cnabled and is
edge-triggered. Explain how this interrupt works when it is activated. How can

346




47.

48.

49,
50.
31,
52.

we make sure that a single interrupt is not interpreted as multiple interrupts?
Write a program using interrupts to get data from P1 and send it to P2 while
Timer 0 is generating a square wave of 3 kHz.

Write a program using interrupts to get data from P1 and send it to P2 while
Timer 1 is turning on and off the LED connected to P0.4 every second.
Explain the difference between the low-level and edge-triggered interrupts.
How do we make the hardware interrupt edge-triggered?

Which interrupts are latched, low-level or edge-triggered?

Which register keeps the latched interrupt for INTO and INT1?

SECTION 11.4: PROGRAMMING THE SERIAL COMMUNICATION INTERRUPT

53.
54.

3,

56.

57.

58

59.

60.

61

62

63.

True or false. There are two interrupts assigned to interrupts TI and RI.

What address in the interrupt vector table is assigned to the serial interrupt?
How many bytes are assigned to it?

Which bit of the IE register belongs to the serial interrupt? Show how it is
enabled.

Assume that the IE bit for the serial interrupt is enabled. Explain how this
interrupt gets activated and also explain its working upon activation.

True or false. Upon reset, the serial interrupt is blocked.

. True or false. The last two instructions of the ISR for the receive interrupt are:

CLR TI

RETI
Answer Question 58 for the receive interrupt.
Assuming that the interrupt bit in the IE register is enabled, when T1 is raised,
what happens subsequently?

. Assuming that the interrupt bit in the IE register is enabled, when RI is raised,

what happens subsequently?

. Write a program using interrupts to get data serially and send it to P2 while at

the same time Timer 0 is generating a square wave of 5 kHz.
Write a program using interrupts to get data serially and send it to P2 while
Timer 0 is turning the LED connected to P1.6 on and off every second.

SECTION 11.5: INTERRUPT PRIORITY IN THE 8051/52

64.
65.
66.
67.
68.
69.

70.

True or false. Upon reset, EX1 has the highest priority.
What register keeps track of interrupt priority in the 80512 Explain its role.

Which bit of IP belongs to the EX2 interrupt priority? Show how to assign it
the highest priority.

Which bit of IP belongs to the Timer | interrupt priority? Show how to assign
it the highest priority.

Which bit of IP belongs to the EX1 interrupt priority? Show how to assign it
the highest priority.

Assume that the IP register has all 0s. Explain what happens if both INT0 and

INT1 are activated at the same time.
Assume that the IP register has all Os. Explain what happens if both TF0 and
TF1 are activated at the same time.

CHAPTER 11: INTERRUPTS PROGRAMMING IN ASSEMBLY AND C 347




71.

72.

73.

If both TFO and TF1 in the IP are set to high, what happens if both are acti-
vated at the same time?

If both INTO and INT1 in the IP are set to high, what happens if both are acti-
vated at the same time?

Explain what happens if a low-priority interrupt is actlvated while the 8051 is
serving a higher-priority interrupt.

ANSWERS TO REVIEW QUESTIONS

SECTION 11.1: 8051 INTERRUPTS

1

2.
3.
4

o @

Interrupts

5

Address locations 0000 to 25H. No. They are set when the processor is designed.

All Os means that all interrupts are masked, and as a result no interrupts will be responded to
by the 8051.

MOV IE,#10000011B

P3.3, which is pin 13 on the 40-pin DIP package

0013H for INT1 and 001BH for Timer 1

SECTION 11.2: PROGRAMMING TIMER INTERRUPTS

adbadl e

5.

False. There is an interrupt [or each of the timers, Timer 0 and Timer 1.

000BH

Bits D1 and D3 and “MOV IE, #10001010B" will enable both of the timer interrupts.
After Timer 1 is started with instruction “SETB TR1”, the timer will count up from F5H to
FFH on its own while the 8051 is executing other tasks. Upon rolling over from FFH to 00,
the TF1 flag is raised, which will interrupt the 8051 in whatever it is doing and force it to jump
to memory location 001BH to execute the ISR belonging to this interrupt.

False. There is no need for “CLR TF0” since the RETI instruction does that for us.

SECTION 11.3: PROGRAMMING EXTERNAL HARDWARE INTERRUPTS

False. There is an interrupt for each of the external hardware interrupts of INTO and INT1.
0003H and 0013H. The pins numbered 12 (P3.2) and 13 (P3.3) on the DIP package.

Bits DO and D2 and “MOV IE,#10000101B” will enable both of the external hardware
interrupts.

Upon application of a low pulse (4 machine cycles wide) to pin P3.3, the 8051 is interrupted
in whatever it is doing and jumps to ROM location 0013H to execute the ISR,

True

Make sure that the low pulse applied to pin INTI is no wider than 4 machine cycles. Or, make
sure that the INT1 pin is brought back to high by the time the 8051 executes the RETI instruc-
tion in the ISR.

False. There is no need for the “CLR TCON. 0" since the RETI instruction does that for us.
TCON.0 is set to high to make INTO an edge-triggered interrupt. If INTO is edge-triggered
(that is, TCON.0 is set), whenever a high-to-low pulse is applied to the INTO pin it is captured
(latched) and kept by the TCON.2 bit by making TCON.2 high. While the ISR for INTO is
being serviced, TCON.2 stays high no matter how many times an H-to-L pulse is applied to
pin INTO. Upon the execution of the last instruction of the ISR, which is RETI, the TCON.2
bit is cleared, indicating that the INTO pin can respond to another interrupt.

348




